ANALISIS FORECASTING DEMAND OBAT TABLET DI GUDANG OBAT DINAS KESEHATAN PROVINSI JAWA BARAT
ANALISIS FORECASTING DEMAND OBAT TABLET DI GUDANG OBAT DINAS KESEHATAN PROVINSI JAWA BARAT
DOI:
https://doi.org/10.36761/hexagon.v6i2.5769Keywords:
Inventory, Forecasting Analysis , Medicine WarehouseAbstract
The medicine warehouse of the West Java Provincial Health Service is a drug dispensing center which has various data regarding drug dispensing in 2023. Data analysis shows that drugs in tablet form are the most dominant unit in the dispensing process, with total dispensing reaching 3,648 times to all health facilities or City/Regency Health Offices throughout West Java. Given the significance of the use of tablet drugs, this study proposes the application of demand forecasting analysis as a strategy to improve the efficiency of drug inventory management. By predicting the demand for tablet drugs, the West Java Provincial Health Office can more effectively prepare drug stocks, reduce the risk of shortages or excess stock, and respond to high market demand. Based on the results of data processing carried out using the Simple Linear Regression Forecasting analysis of the Antiretroviral (ARV) drug program, the MAPE was obtained at 69%, smaller than the MAPE from the Single Exponential Smoothing Forecasting analysis of 83.780%. Meanwhile, for the Buffer drug program, the Single Exponential Smoothing Forecasting analysis is more accurate than the Simple Linear Regression Forecasting analysis because the MAPE calculation results from the exponential smoothing analysis of 79.088% are smaller than the Simple Linear Regression MAPE calculation of 85%. It is expected that the demand forecasting analysis model can be a strategic tool for the Ministry of Health's drug warehouse in overcoming the challenges of drug inventory management, while reducing overall drug procurement costs.
References
Implementasi Metode Exponential Smoothing Sebagai Forecasting Permintaan Obat Pada Dinas Kesehatan Kota Surabaya. (2017). Jurnal Insand Comtech, 1-8.
Indonesia, M. K. (2008). Keputusan Menteri Kesehatan Republik Indonesia. Dokumen Indonesia, 1-3.
Kerlinger, F. N. 1992. Organizational Beavior. Alih Bahasa : Simatupang, L. R : Gadjah Mada University Press.
Keuangan, D. U. (1992). Undang-Undang (UU) Nomor 23 Tahun 1992 tentang Kesehatan. peraturan.bpk, 1-41.
Kusumawardani, N., Afnadi, M. R., & Riani, L. P. (2019). Analisis Forecasting Demand Dengan Metode Linear Exponential Smoothing (Studi Pada Produk Batik Fendy, Klaten). journal.uny.ac.id, 81-89.
Poerwandari, E. K. 2001. Pendekatan kualitatif Untuk Penelitian Perilaku Manusia. Jakarta : Lembaga Pengembanagn Sarana Pengukuran dan Pendidikan Psikologi (LPSP3) Fakultas Psikologi Universitas Indonesia.
Trihendradi, C. (2005). Step By Step SPSS 13 Analisis Data Statistika. Yogyakarta: Penerbit Andi.
Wahyudina, S. N., Hasmiraldi, E., & Tomi. (2022). Analisis Perbandingan Metode Double Exponential Smoothing Dan Metode Siklis Pada Forecasting Permintaan Produksi Visval. Texere, 118-130.
Yuniarti, R. (2021). Analisa Metode Exponential Smoothing Sebagai Peramalan Penjualan Terhadap Penyalur Makanan (Studi Kasus:Lokatara Dimsum). ALIANSI Jurnal Manajemen & Bisnis, 29-33.
Yunika, S., & Sugiono. (2017). Sistem Peramalan Menggunakan Metode Exponential Smoothing Dan Weight Moving Average di Perusahaan Konstruksi Telekomunikasi. Konvergensi, 13(2),59-67.
Published
Issue
Section
Copyright (c) 2025 Hexagon

This work is licensed under a Creative Commons Attribution 4.0 International License.