ANALISA PERFORMA METODE TRAINING ARTIFICIAL NEURAL NETWORK DALAM MENDETEKSI TOTAL HARMONIC DISTORTION

Authors

  • Masyitah Aulia Universitas Teknologi Surabaya
  • Ony Ramadhan Armanto Universitas Teknologi Surabaya
  • Moh.Yasya Bahrul Ulum Universitas Teknologi Surabaya

DOI:

https://doi.org/10.36761/hexagon.v6i2.6283

Keywords:

Artificial Neural Network, Pattern Clasification, Training Algorithms, Bayesian Regularization, Levenbergh - Marquadt)

Abstract

This Study aims to asses the performance of several training algorithms in Artificial Neural Network for pattern classification task based on input data. The research problem focuses on how training algorithms can produce low error rates in classification. The scientific gap lies in the limited comparative studies that comprehenseively exmine various training methods with variations in the number of hidden neurons. This research utilizes five training methods, Levenburgh – Marquadt, Scaled Conjugate Gradient, Resilient Backpropagation, BFGS Quasi – Newton, and Bayesian Reqularization. The hidden neuron variations range from 5 to 50 neurons. The result indicate that the best performance is achieved using the Bayessian Regularization method, which produces a MAPE value 0.01, an RMSE of 0.0167, abnd accuracy of 99.98%. These findings demonstrate that choosing the appropriate training function significantly affects the performance of Artificial Neural Networks.

References

Abbas, M., Mabrouk, A., Elaissi, S., Adnan Othman, N., Bayram, M., Faqihi, A. A., Khan, I., & Ghazi, H. M. (2025). Intelligent solution predicted Bayesian regularization networks for chemical reactive flow of hybrid nanoliquid with applications of bioconvection and solar radiation. Journal of Radiation Research and Applied Sciences, 18(3), 101774. https://doi.org/10.1016/j.jrras.2025.101774

Abdal, S., Taha, T., Shah, N. A., & Yook, S.-J. (2025). Novel investigation of burger fluid with gyrotactic microorganisms over a sheet using levenberg marquardt back propagations (LMBP). Alexandria Engineering Journal, 117, 403–417. https://doi.org/10.1016/j.aej.2025.01.014

Abdelhamid, M., Bechouat, T., & Chaib, Y. (2025). A new hybrid conjugate gradient method as a convex combination methods. Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science, 179–192. https://doi.org/10.31926/but.mif.2025.5.67.2.14

AL-Rousan, N., & Al-Najjar, H. (2021). A Comparative Assessment of Time Series Forecasting Using NARX and SARIMA to Predict Hourly, Daily, and Monthly Global Solar Radiation Based on Short-Term Dataset. Arabian Journal for Science and Engineering, 46(9), 8827–8848. https://doi.org/10.1007/s13369-021-05669-6

Atallah, E. S., Hagag, A., Ali, E. M., & Abassy, T. A. (2025). Using the Quasi-Newton Method to Solve Nonlinear Least Squares Regression Problems. International Journal of Applied Intelligent Computing and Informatics, 1(1), 9–15. https://doi.org/10.21608/ijaici.2025.340085.1004

Carlon, A., Espath, L., & Tempone, R. (2025). Efficient Stochastic BFGS methods Inspired by Bayesian Principles (arXiv:2507.07729). arXiv. https://doi.org/10.48550/arXiv.2507.07729

Chitalia, G., Pipattanasomporn, M., Garg, V., & Rahman, S. (2020). Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Applied Energy, 278, 115410. https://doi.org/10.1016/j.apenergy.2020.115410

Elhamid, M. A., Yacine, C., & Tahar, B. (2025). Two improved nonlinear conjugate gradient methods with application in conditional model regression function. Journal of Industrial and Management Optimization, 21(1), 658–675. https://doi.org/10.3934/jimo.2024098

Gazzola, C., Corigliano, A., & Zega, V. (2025). Total harmonic distortion estimation in piezoelectric micro-electro-mechanical-system loudspeakers via a FEM-assisted reduced-order-model. Mechanical Systems and Signal Processing, 222, 111762. https://doi.org/10.1016/j.ymssp.2024.111762

Ishak, M. A. I., Ayub, Y., & Marjugi, S. M. (2025). A New Family of Hybrid Three-Term Conjugate Gradient BNC-BTC Based on Scaled Memoryless BFGS Update for Unconstrained Optimization Problems. 14(2).

Kalogirou, S. A. (2001). Artificial neural networks in renewable energy systems applications: A review. Renewable and Sustainable Energy Reviews, 5(4), 373–401. https://doi.org/10.1016/S1364-0321(01)00006-5

Klyuev, R. V., Morgoev, I. D., Morgoeva, A. D., Gavrina, O. A., Martyushev, N. V., Efremenkov, E. A., & Mengxu, Q. (2022). Methods of Forecasting Electric Energy Consumption: A Literature Review. Energies, 15(23), 8919. https://doi.org/10.3390/en15238919

Liu, C., Luo, L., & Lui, J. C. S. (n.d.). An Enhanced Levenberg—Marquardt Method via Gram Reduction.

Mirza, C. R., Abbas, M., Idris, S. A., Khan, Y., Alameer, A., Rajab, A. B., Ismailov, S., Faqihi, A. A., Abbas, A., & Ben Khedher, N. (2025). Intelligent computing technique to analyze the two-phase flow of dusty trihybrid nanofluid with Cattaneo-Christov heat flux model using Levenberg-Marquardt Neural-Networks. Case Studies in Thermal Engineering, 68, 105891. https://doi.org/10.1016/j.csite.2025.105891

Mishan, R., Fu, X., Hingu, C., & Fajri, P. (2025). Analyzing frequency spectrum and Total Harmonic Distortion for high switching frequency operation of GaN-based filter-less multilevel cascaded H-bridge inverter. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 11, 100906. https://doi.org/10.1016/j.prime.2025.100906

Mohammed, N. A., & Al-Bazi, A. (2022). An adaptive backpropagation algorithm for long-term electricity load forecasting. Neural Computing and Applications, 34(1), 477–491. https://doi.org/10.1007/s00521-021-06384-x

Mundada, D., Murade, A., & Vaidya, O. (2016). SOFTWARE FAULT PREDICTION USING ARTIFICIAL NEURAL NETWORK AND RESILIENT BACK PROPAGATION. 5.

Nawaz, W., Siddiqi, M. H., & Almadhor, A. (2023). Adaptively Directed Image Restoration Using Resilient Backpropagation Neural Network. International Journal of Computational Intelligence Systems, 16(1). https://doi.org/10.1007/s44196-023-00259-w

Saputra, W., Tulus, Zarlis, M., Sembiring, R. W., & Hartama, D. (2017). Analysis Resilient Algorithm on Artificial Neural Network Backpropagation. Journal of Physics: Conference Series, 930, 012035. https://doi.org/10.1088/1742-6596/930/1/012035

Shobug, M. A., Alamgir Hossain, M., Yang, F., & Lu, J. (2025). Dynamic Control of Isolated Network Microgrids: A Resilient Backpropagation Neural Network-Based Virtual Inertia Control Approach. IEEE Access, 13, 99939–99956. https://doi.org/10.1109/access.2025.3576345

Zajmi, L., Ahmed, F. Y. H., & Jaharadak, A. A. (2018). Concepts, Methods, and Performances of Particle Swarm Optimization, Backpropagation, and Neural Networks. Applied Computational Intelligence and Soft Computing, 2018, 1–7. https://doi.org/10.1155/2018/9547212

Published

2025-06-18

Issue

Section

Articles