PERANCANGAN SISTEM REKOMENDASI SABUN CUCI MUKA MENGGUNAKAN ALGORITMA TOPSIS
DOI:
https://doi.org/10.51401/jinteks.v6i4.4878Keywords:
Facial Cleanser, Recommendation, System, Algorithm, TOPSISAbstract
Facial cleansers are one of the skincare products widely used by individuals ranging from children to adults. The main benefit of facial cleansers is to remove dirt from the user’s face. The numerous brands and types of ingredients in facial cleansers often lead to users making incorrect choices when selecting a cleanser that meets their skin needs. Therefore, this research develops a facial cleanser recommendation system using the Naïve Bayes algorithm, aimed at facilitating the selection of products that match the condition of the user's skin. The Naive Bayes algorithm is chosen for its simplicity and efficiency in processing text data, as well as its ability to provide fast and accurate results in classification. The stages of system development include data collection and preprocessing, feature and label separation, and model training. The dataset used is sourced from official websites. The outcome of this research is a recommendation system for facial cleansers, where users input their skin concerns into the system, and it automatically generates a list of facial cleanser products that correspond to the user’s complaints. For example, if the user has oily skin, the recommended products will be those suitable for oily skin.
References
R. Pebrianto, S. Nurhasanah Nugraha, And W. Gata, “Perancangan Sistem Pakar Penentuan Jenis Kulit Wajah Menggunakan Metode Certainty Factor,” 2019.
S. D. Kusumaningrum, “Kajian Pustaka Dalam Penentuan Tipe Dan Permasalahan Kulit Wajah,” 2021. [Online]. Available: Https://Www.Google.Com/
D. A. N. Safitri, R. Helilintar, And L. S. Wahyuniar, “Sistem Rekomendasi Skincare Menggunakan Metode Content-Based Filtering Dan Algoritma Apriori,” 2021.
Y. K. Kumarahadi, M. Z. Arifin, S. Pambudi, T. Prabowo, And K. Kusrini, “Sistem Pakar Identifikasi Jenis Kulit Wajah Dengan Metode Certainty Factor,” Jurnal Teknologi Informasi Dan Komunikasi (Tikomsin), Vol. 8, No. 1, Apr. 2020, Doi: 10.30646/Tikomsin.V8i1.453.
N. A. Rahmi And G. W. Nurcahyo, “Sistem Pakar Dalam Membandingkan Metode Forward Chaining Dengan Certainty Factor Untuk Mengidentifikasi Jenis Kulit Wajah,” Jurnal Sistim Informasi Dan Teknologi, Vol. 3, No. 4, Pp. 1–6, 2021.
Sulindawaty And H. Fahmi, “Analisis Sistem Pakar Dengan Metode Forward Chaining Untuk Pengenalan Jenis Kulit Wajah Pada Manusia,” Jurnal Ilmu Komputer Dan Sistem Informasi (Jikomsi), Vol. 5, No. 2, Pp. 90–95, 2022.
J. Y. Sinaga, F. Amalia, And E. Santoso, “Pengembangan Sistem Rekomendasi Produk Perawatan Kulit Berbasis Web Menggunakan Metode Ahp,” 2020. [Online]. Available: Http://J-Ptiik.Ub.Ac.Id
K. P. Y. P. Bagus And F. E. Purwiantono, “Sistem Rekomendasi Jurusan Menggunakan Algoritma Naive Bayes Gaussian Berbasis Web,” Journal Of Information And Technology (J-Intech), Vol. 65146, No. 100, Pp. 361–370, 2022.
D. S. Megah, Sulfayanti, And N. Arifin, “Rekomendasi Makanan Pendamping Asi Berdasarkan Kebutuhan Kalori Menggunakan Algoritma Naive Bayes,” Jurnal Ilmiah Sistem Informasi Dan Teknik Informatika (Jisti), Vol. 5, No. 2, Pp. 131–141, Oct. 2022, Doi: 10.57093/Jisti.V5i2.141.
I. N. Mulyanan, M. Yusril, H. Setyawan, And W. I. Rahayu, “Penerapan Metode Naive Bayes Untuk Merekomendasikan Pekerjaan Yang Sesuai Terhadap Fresh Graduate,” 2023.
D. S. Angreni And M. Susanti, “Implementasi Data Mining Untuk Rekomendasi Kenaikan Pangkat Pegawai Negeri Sipil Menggunakan Algoritma Naïve Bayes Pada Biro Administrasi Pimpinan Sekretariat Daerah Provinsi Sulawesi Tengah,” Journal Of Social Science Research, Vol. 4, No. 1, Pp. 9662–9674, 2024.
F. B. A. Larasati And H. Februariyanti, “Sistem Rekomendasi Product Emina Cosmetics Dengan Menggunakan Metode Content-Based Filtering,” Misi(Jurnal Manajemen Informatika & Sistem Informasi), Vol. 4, No. 1, Pp. 45–54, 2021.
Y. Suharya, Y. Herdiana, N. I. Putri, And Munawar Zen, “Sistem Rekomendasi Untuk Toko Online Kecil Dan Menengah,” Jurnal Teknologi Informasi Komunikasi, Vol. 8, No. 2, Pp. 176–185, 2021.
Z. Munawar Et Al., “Sistem Rekomendasi Hibrid Menggunakan Algoritma Apriori Mining Asosiasi,” 2021.
N. Indah Putri, Y. Herdiana, And Z. Munawar, “Sistem Rekomendasi Hibrid Pemilihan Mobil Berdasarkan Profil Pengguna Dan Profil Barang,” 2021.
H. Februariyanti, A. Dwi Laksono, J. Sasongko Wibowo, And M. Siswo Utomo, “Implementasi Metode Collaborative Filtering Untuk Sistem Rekomendasi Penjualan Pada Toko Mebel,” Jurnal Khatulstiwa Informatika, Vol. 9, No. 1, 2021, [Online]. Available: Www.Unisbank.Ac.Id
E. Erlangga And H. Sutrisno, “Jurnal Manajemen Sistem Informasi Dan Teknologi Sistem Rekomendasi Beauty Shop Berbasis Collaborative Filtering,” 2020.
A. Wibisono Informatika, “Filtering Spam Email Menggunakan Metode Naive Bayes.”
A. T. Zy, A. T. Sasongko, And A. Z. Kamalia, “Penerapan Naïve Bayes Classifier, Support Vector Machine, Dan Decision Tree Untuk Meningkatkan Deteksi Ancaman Keamanan Jaringan,” Kajian Ilmiah Informatika Dan Komputer, Vol. 4, No. 1, Pp. 610–617, 2023, Doi: 10.30865/Klik.V4i1.1134.
A. Avianto, N. Nafi’iyah, And N. Q. Nawafilah, “Rekomendasi Pemilihan Baju Wanita Dengan Metode Naive Bayes,” Jurnal Nasional Komputasi Dan Teknologi Informasi, Vol. 2, No. 2, 2019.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Febriana Fatimah Putri, Muhammad Fachrie

This work is licensed under a Creative Commons Attribution 4.0 International License.
















