IMPLEMENTASI ALGORTIMA CONVOLUTIONAL NEURAL NETWORK UNTUK DETEKSI PENYAKIT DAUN KENTANG MENGGUNAKAN CITRA DIGITAL

Authors

  • Aldianto Dickyu Septian Universitas Teknologi Yogyakarta
  • Agus Suhendar Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.51401/jinteks.v6i4.4880

Keywords:

Convolutional Neural Network, disease classification, VGG16, MobileNet-V2, ConvNeXtBase

Abstract

Potato plants are an important food crop but are susceptible to leaf diseases such as early blight and late blight, which can significantly reduce crop yields. In this study, we developed and compared several convolutional neural network (CNN) models to classify potato leaf diseases based on visual images. The data used consisted of potato leaf images in three classes: healthy, early blight, and late blight. The image dataset was processed through augmentation and normalization to improve model accuracy. Three CNN architectures, namely MobileNet-V2, VGG16, and ConvNeXtBase, were implemented and tested with different batch sizes. Based on the results, the VGG16 architecture with a batch size of 32 provided the best performance with a classification accuracy of 95.93%, followed by MobileNet-V2 with an accuracy of 94.15%. Therefore, CNN models, particularly VGG16, proved effective in identifying potato leaf diseases, contributing to more efficient crop management and reducing yield losses.

References

A. M. Lesmana, R. P. Fadhillah, and C. Rozikin, “Identifikasi Penyakit pada Citra Daun Kentang Menggunakan Convolutional Neural Network (CNN),” Jurnal Sains Dan Informatika, vol. 8, no. 1, pp. 21–30, 2022.

K. I. Nauval and S. Lestari, “Implementasi Deteksi Objek Penyakit Daun Kentang dengan Metode Convolutional Neutral Network,” Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM), vol. 3, no. 2, pp. 136–149, 2022, doi: 10.31102/jatim.v3i2.1576.

A. Fuadi and A. Suharso, “Perbandingan Arsitektur Mobilenet Dan Nasnetmobile Untuk Klasifikasi Penyakit Pada Citra Daun Kentang,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 3, pp. 701–710, 2022, doi: 10.29100/jipi.v7i3.3026.

L. Aumatullah, I. Ein, and M. M. Santoni, “Identifikasi Penyakit Daun Kentang Berdasarkan Fitur Tekstur dan Warna Dengan Menggunakan Metode K-Nearest Neighbor,” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA), no. April, pp. 783–791, 2021.

M. A. Iqbal and K. H. Talukder, “Detection of Potato Disease Using Image Segmentation and Machine Learning,” 2020 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2020, pp. 43–47, 2020, doi: 10.1109/WiSPNET48689.2020.9198563.

Khafi, “Identifikasi Penyakitpada Tanaman Kentang Dengan K-Nearest Neighborberdasarkan Fitur Warna Dan Tekstur Daun,” pp. 1–23, 2020.

L. Meno, O. Escuredo, M. S. Rodríguez-Flores, and M. C. Seijo, “Modification of the tomcast model with aerobiological data for management of potato early blight,” Agronomy, vol. 10, no. 12, 2020, doi: 10.3390/agronomy10121872.

A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creative Information Technology Journal, vol. 8, no. 1, pp. 22–31, 2021.

C. Su and W. Wang, “Concrete Cracks Detection Using Convolutional NeuralNetwork Based on Transfer Learning,” Math Probl Eng, vol. 2020, 2020, doi: 10.1155/2020/7240129.

D. Bhatt et al., “Cnn variants for computer vision: History, architecture, application, challenges and future scope,” Electronics (Switzerland), vol. 10, no. 20, pp. 1–28, 2021, doi: 10.3390/electronics10202470.

T. Y. P. Situngkir, “KLASIFIKASI PENYAKIT PADA DAUN KENTANG MENGGUNAKAN PENGOLAHAN CITRA DENGAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN),” UPN’Veteran" Yogyakarta, 2022.

J. R. Aisya and A. Prasetiadi, “Klasifikasi Penyakit Daun Kentang dengan Metode CNN dan RNN,” Jurnal Tekno Insentif, vol. 17, no. 1, pp. 1–10, 2023.

R. A. Sholihati, I. A. Sulistijono, A. Risnumawan, and E. Kusumawati, “Potato Leaf Disease Classification Using Deep Learning Approach,” IES 2020 - International Electronics Symposium: The Role of Autonomous and Intelligent Systems for Human Life and Comfort, pp. 392–397, 2020, doi: 10.1109/IES50839.2020.9231784.

N. Z. Munantri, H. Sofyan, and M. Y. Florestiyanto, “Aplikasi Pengolahan Citra Digital Untuk Identifikasi Umur Pohon,” Telematika, vol. 16, no. 2, p. 97, 2020, doi: 10.31315/telematika.v16i2.3183.

A. K. Syarif, “Sistem Klasifikasi Penyakit Tanaman Cabai Menggunakan Metode Deep Learning Dengan Library Tensorflow Lite,” Universitas Hasanuddin, 2021.

M. Rahman and A. Pambudi, “Identifikasi Citra Daun Selada Dalam Menentukan Kualitas Tanaman Menggunakan Algoritma Convolutional Neural Network (Cnn),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 11, no. 3, pp. 851–858, 2023, [Online]. Available: http://dx.doi.org/10.23960/jitet.v11i3 s1.3438

F. Ramadhani, A. Satria, and S. Salamah, “Implementasi Algoritma Convolutional Neural Network dalam Mengidentifikasi Dini Penyakit pada Mata Katarak,” sudo Jurnal Teknik Informatika, vol. 2, no. 4, pp. 167–175, 2023, doi: 10.56211/sudo.v2i4.408.

A. T. R. Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” e-Proceeding of Engineering, vol. 8, no. 2, pp. 3039–3055, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/14701/14478

F. Zaelani and Y. Miftahuddin, “Perbandingan Metode EfficientNetB3 dan MobileNetV2 Untuk Identifikasi Jenis Buah-buahan Menggunakan Fitur Daun,” Jurnal Ilmiah Teknologi Infomasi Terapan, vol. 9, no. 1, pp. 1–11, 2022, doi: 10.33197/jitter.vol9.iss1.2022.911.

H. Zhang, C. Liu, J. Ho, and Z. Zhang, “Crack Detection based on Convnext and Normalization,” J Phys Conf Ser, vol. 2289, no. 1, 2022, doi: 10.1088/1742-6596/2289/1/012022.

A. H. Qisthan, “Analisis performa metode convolutional neural network dengan arsitektur convnext dalam klasifikasi spesies ular berbisa dan tidak berbisa di indonesia,” Repository.Uinjkt.Ac.Id, 2023, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/77034%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/77034/1/ALIFIAR HAZAZI QISTHAN-FST.pdf

Published

2024-11-22

How to Cite

[1]
A. D. . Septian and A. . Suhendar, “IMPLEMENTASI ALGORTIMA CONVOLUTIONAL NEURAL NETWORK UNTUK DETEKSI PENYAKIT DAUN KENTANG MENGGUNAKAN CITRA DIGITAL”, JINTEKS, vol. 6, no. 4, pp. 1017-1025, Nov. 2024.

Issue

Section

Articles