PENERAPAN METODE COLLABORATIVE FILTERING DAN AUTOENCODER DALAM REKOMENDASI RESTORAN HALAL
DOI:
https://doi.org/10.51401/jinteks.v6i4.4904Keywords:
Recommendation, Halal restaurant, Collaborative filtering, AutoencoderAbstract
The proliferation of restaurants without halal labels has raised concerns among the public, especially in areas with a majority non-Muslim population, often leading people to be misled. To address this issue, a recommendation system is needed that can provide accurate information about halal restaurants. This study proposes a hybrid filtering method, which combines collaborative filtering and autoencoder, to improve the accuracy of recommendations. The dataset used in this study consists of 19,032 restaurant records obtained from Google Maps through a web scraping process. Additionally, cosine similarity is used to measure the similarity between user preferences, making the recommendations more relevant and personalized. The research steps include data collection, data filtering, cosine similarity application, collaborative filtering, autoencoder, and evaluation. The results show that this hybrid method is capable of providing highly accurate halal restaurant recommendations, as evidenced by the low RMSE value.
References
Ahmed, E., & Letta, A. (2023). Book Recommendation Using Collaborative Filtering Algorithm. Applied Computational Intelligence and Soft Computing, 2023, doi: 10.1155/2023/1514801
Ajaegbu, C. (2021). An optimized item-based collaborative filtering algorithm. Journal of Ambient Intelligence and Humanized Computing, 12(12), 10629–10636, doi: 10.1007/s12652-020-02876-1
Bank, D., Koenigstein, N., & Giryes, R. (2023). Autoencoders. Machine Learning for Data Science Handbook: Data Mining and Knowledge Discovery Handbook, Third Edition, 353–374, doi: 10.1007/978-3-031-24628-9_16
BATMAZ, Z., & KALEL?, C. (2022). A new similarity-based multicriteria recommendation algorithm based onautoencoders. Turkish Journal of Electrical Engineering and Computer Sciences, 30(3), 855–870, doi: 10.55730/1300-0632.3815
Busch, P. A., Hausvik, G. I., Ropstad, O. K., & Pettersen, D. (2021). Smartphone usage among older adults. Computers in Human Behavior, 121(March), doi: 10.1016/j.chb.2021.106783
Chassagnon, G., Vakalopolou, M., Paragios, N., & Revel, M. P. (2020). Deep learning: definition and perspectives for thoracic imaging. European Radiology, 30(4), 2021–2030, doi: 10.1007/s00330-019-06564-3
Ferreira, D., Silva, S., Abelha, A., & Machado, J. (2020). Recommendation system using autoencoders. Applied Sciences (Switzerland), 10(16), 1–17, doi: 10.3390/app10165510
García-Sánchez, F., Colomo-Palacios, R., & Valencia-García, R. (2020). A social-semantic recommender system for advertisements. Information Processing and Management, 57(2), 102153, doi: 10.1016/j.ipm.2019.102153
Jin, Y., Zhao, H., Liu, M., Zhu, Y., Du, L., Gao, L., & Buntine, W. (2020). Leveraging Cross Feedback of User and Item Embeddings with Attention for Variational Autoencoder based Collaborative Filtering. http://arxiv.org/abs/2002.09145
Mana, S. C., & Sasipraba, T. (2021). Research on cosine similarity and pearson correlation based recommendation models. Journal of Physics: Conference Series, 1770(1), doi: 10.1088/1742-6596/1770/1/012014
Martins, G. B., Papa, J. P., & Adeli, H. (2020). Deep learning techniques for recommender systems based on collaborative filtering. Expert Systems, 37(6), 1–21, doi: 10.1111/exsy.12647
Nasy`an Taufiq Al Ghifari, Benhard Sitohang, & Gusti Ayu Putri Saptawati. (2021). Addressing Cold Start New User in Recommender System Based on Hybrid Approach: A review and bibliometric analysis. IT Journal Research and Development, 6(1), 1–16, doi: 10.25299/itjrd.2021.vol6(1).6118
Nurhayati, S. D., & Widayani, W. (2021). Sistem Rekomendasi Wisata Kuliner di Yogyakarta dengan Metode Item-Based Collaborative Filtering. 1(2), 55–63.
Salloum, S., & Rajamanthri, D. (2021). Implementation and evaluation of movie recommender systems using collaborative filtering. Journal of Advances in Information Technology, 12(3), 189–196, doi: 10.12720/jait.12.3.189-196
Singh, K., Mishra, M., & Singh, E. S. (2024). Content-based Recommender System Using Cosine Similarity. International Journal for Research in Applied Science and Engineering Technology, 12(5), 2541–2548, doi: 10.22214/ijraset.2024.61835
Strub, F., Gaudel, R., & Mary, J. (2016). Hybrid recommender system based on autoencoders. ACM International Conference Proceeding Series, 15-September-2016, 11–16, doi: 10.1145/2988450.2988456
Published
How to Cite
Issue
Section
Copyright (c) 2024 Nauvally Hafizh Revansa, Syarif Hidayat

This work is licensed under a Creative Commons Attribution 4.0 International License.
















